
The University of New South Wales

Final Exam

2005/11/15

COMP3151/COMP9151

Foundations of Concurrency

Time allowed: 3 hours (8:45–12:00)
Total number of questions: 8
Total number of marks: 45

Textbooks, lecture notes, etc. are not permitted, except for 2 double-sided A4
sheets of hand-written notes.

Calculators may not be used.

Not all questions are worth equal marks.

Answer all questions.

Answers must be written in ink.

You can answer the questions in any order.

You may not take this question paper out of the exam.

Except for Question 3, write your answers into the answer booklet provided.
Be concise — excessively verbose answers will be penalised. Use a pencil or the
back of the booklet for rough work. Your rough work will not be marked.

Family Name:

Other Names:

Signature:

Student Number:

Shared-Variable Concurrency (15 Marks)

Question 1 (6 marks)

Give all possible final values of variable x in the following program. Prove your answer
correct in Andrews’ PL.

int x = 0;
sem s1 = 1, s2 = 0;
co P(s2); P(s1); x = x ∗ 2; V(s1);
// P(s1); x = x ∗ x; V(s1);
// P(s1); x = x + 3; V(s2); V(s1);
oc

Question 2 (9 marks)

The Savings Account Problem. A savings account is shared by several people (processes). Each
person may deposit or withdraw funds from the account. The current balance in the account
is the sum of all deposits to date minus the sum of all withdrawals to date. The balance must
never become negative. A deposit never has to delay (except for mutual exclusion), but a
withdrawal has to wait until there are sufficient funds. Withdrawals have to be serviced
first-come-first-served.

Develop a monitor1 to solve this problem. The monitor should have two procedures:
deposit(amount) and withdraw(amount). First specify a monitor invariant. Assume the argu-
ments to deposit and withdraw are positive. Use the Signal-and-Continue discipline. Explain
your solution.

Message-Passing Concurrency (22 Marks)

Question 3 (4 marks)

Fill in the four gaps in the following program such that it becomes a filter process that merges
two EOS-terminated and sorted input streams of integer messages into an EOS-terminated
and sorted output stream of integer messages. (Write your answer to this question directly
on this page, not into the answer booklet.)

op in1(int), in2(int), out(int);
process Merge {

int v1, v2;
receive in1(v1); receive in2(v2);
while (v1 != EOS and v2 != EOS) {

if (v1 <= v2) {
gap 1

} else {
gap 2

1You may use pseudo-MPD monitor notation similar to the one used in the textbook rather than the idiosyn-
cratic m2mpd syntax.

2

}

}

if (v1 == EOS) {
while (v2 != EOS) {

gap 3
}

} else {
while (v1 != EOS) {

gap 4
}

}

send out(EOS);
}

Question 4 (4 marks)

Prove that
{
true
}

P ‖ P′
{
x + 1 = y

}
holds for the synchronous transition diagram:

P : s l1 l2 t"!

"!

"!

"!

-true→ -
E!(x + 1)→

�

D?x→

-true→

P′ : s′ l′1 l′2 t′"!

"!

"!

"!

-true→ -
E?y→

�
D!(y + 1)→

-true→

Question 5 (7 marks)

The following program sketch attempts to implement a (bounded) queue.

global Queue
op deposit(int item), fetch(ref int item);

body
int buf[0:n−1];
int front = 0, rear = 0, count = 0;

proc deposit(item) {
if (count < n) {

buf[rear] = item;
rear = (rear+1) % n; count++;
} else

take actions appropriate for overflow
}

proc fetch(item) {
if (count > 0) {

item = buf[front];
front = (front+1) % n; count−−;
} else

take actions appropriate for underflow

3

}

end Queue

a) (3 marks) Explain why it should not be shared by more than one process. Provide a
counterexample to prove your point.

b) (4 marks) Rewrite the global such that it can be shared by an arbitrary number of
processes. Hint: the in statement might be helpful.

Question 6 (7 marks)

Meeting scheduler. Consider three processes, each having a local array of integers already
sorted in ascending order. At least one integer value is contained in all three arrays. Develop
an MPD program or an asynchronous transition diagram for the three processes. The three
processes exchange messages until each has determined the smallest common value. Provide
key assertions in each process and give pre- and postconditions for the core of the whole
program.

Restrictions: Messages contain only one integer value at a time. Processes should limit
the number of messages they send in order to save bandwidth. For instance, it would be
unreasonable to send messages containing array values beyond the earliest common meeting
time. (This restriction is imposed to preclude solutions in which some processes simply send
all their array content.)

Discuss termination and the role of fairness.

Automata and Logic (8 Marks)

Appendix B contains a summary of LTL and Büchi automata.

Question 7 (4 marks)

Construct a Büchi automaton recognising exactly the models of the LTL formula0(p→1q).

Question 8 (4 marks)

Consider the Büchi automaton A = ({q0, q1}, {{}, {p}}, q0, {(q0, {p}, q1), (q1, {}, q0), q1}) depicted
below. Characterise the infinite words A recognises (a) informally and (b) with an LTL
formula.

q0 q1

{p}

{}"!

"!

��
��

- -
�

4

A Andrews’ PL (a Proof System for MPD Annotations)

Assignment axiom {
φ[e/x]

}
x = e

{
φ
}

ass

Composition rule {
φ
}

S1

{
ψ
}

,
{
ψ
}

S2
{
ψ′
}{

φ
}

S1;S2

{
ψ′
} comp

If-Else statement rule {
φ ∧ b

}
S1

{
ψ
}

,
{
φ ∧ ¬b

}
S2

{
ψ
}{

φ
}
if (b) S1 else S2

{
ψ
} if

While statement rule {
φ ∧ b

}
S
{
φ
}{

φ
}
while (b) S

{
φ ∧ ¬b

} while

Rule of consequence

φ′ → φ,
{
φ
}

S
{
ψ
}

, ψ→ ψ′{
φ′
}

S
{
ψ′
} cons

Await statement rule {
φ ∧ b

}
S
{
ψ
}{

φ
}
<await (b)S>

{
ψ
} await

Co statement rule {
φi

}
Si

{
ψi

}
hold and are interference free{∧

i φi

}
co S1 // . . . // Sn oc

{∧
iψi

} co

Semaphore wait rule

φ ∧ s > 0→ ψ[s−1/s]{
φ
}
P(s)

{
ψ
} P

Semaphore signal rule

φ→ ψ[s+1/s]{
φ
}
V(s)

{
ψ
} V

Simplifying assumption: arithmetic on bounded types such as int does not wrap around
silently. Overflow and underflow errors lead to abnormal termination which renders pro-
gram behaviours irrelevant to partial correctness arguments such as proofs in PL.

5

B LTL and Büchi Automata

Recall the syntax of Linear time Temporal Logic:

φ ::= p | ¬φ | φ ∨ φ | 2φ | φ U φ

where p is proposition symbol drawn from some finite set P.

We employ the usual abbreviations for “truth”: true = p ∨ ¬p, “falsehood”: false = ¬true,
“conjunction”: φ∧ψ = ¬(¬φ∨¬ψ), “eventually”:1φ = trueUφ, “henceforth”: 0φ = ¬1¬φ.

LTL Semantics

LTL formulae are evaluated over infinite state sequences (or behaviours), where states are
identified with sets of propositional symbols. Thus the state space isΣ = 2P (= { P | P ⊆ P }).

The satisfaction relation |= between behaviours σ = (si)i∈N and LTL formulae is defined
inductively by:

• σ |= p (where p ∈ P) iff p ∈ s0.

• σ |= ¬ψ iff σ 6|= ψ.

• σ |= ψ ∨ ψ′ iff σ |= ψ or σ |= ψ′.

• σ |=2ψ iff (si+1)i∈N |= ψ.

• σ |= ψ U ψ′ iff there exists k ∈ N such that (si+k)i∈N |= ψ′, and, for all j ∈ N such that
0 ≤ j < k, we have that (si+ j)i∈N |= ψ.

Büchi automata

A Büchi automaton is an NFA A = (Q,A, q0,∆,F) understood as an acceptor of behaviours,
not finite words over its alphabet A. Formally, A accepts (si)i∈N iff there exists an infinite
sequence (li)i∈N of automaton states such that

• l0 = q0,

• (li, si, li+1) ∈ ∆, for all i ∈N, and

• some element of the final state set F occurs infinitely often in (li)i∈N.

6

